
Selected Two’s Elements at a Time for Improving

the Performance of Selection Sorting Algorithm
Anuradha Brijwal

1
, Arpit Goel

2
,Wajahat Gh mohd

3

1
 Dept. Of Computer Science & Engineering, Himalayan Institute of Technology, Dehradun Uttarakhand (India)

2
Dept. Of Computer Science & Engineering, Himalayan School of Engineering & Technology, Swami Rama Himalayan

University, Dehradun Uttarakhand (India)

Dept. of computer science and engineering, JB institute of technogy Dehradun Uttrakhand.
1
meetanubrijwal01@gmail.com,

2
arpitgoel29@gmail.com, wajahatiust040@gmail.com

3

Abstract-
 Sorting is an algorithm that arranges all elements of an array, orderly. Sorting involves rearranging information into either ascending or descending

order. In computer science and mathematics, a sorting algorithm is an algorithm that puts elements of a list in a certain order, not necessarily in

increasing order; it may be in decreasing order as well. Efficient sorting is important to optimizing the use of other algorithms that require sorted list

to work efficiently; it is also useful for producing human-readable output. Most simple sorting algorithms involve two steps which are compare two

items and swap two items or copy one item. In this paper we present a new sorting algorithm, named as Dual-Element Selection Sorting, which is

faster than selection sort. After studying various sorting algorithms; I found that there are no such sorting algorithms which work on the basis of

selecting two elements at a time, means selecting two elements simultaneously. We also compare Dual-Element Selection Sort algorithm with

selection sort. We have used the MATLAB for implementation. The new algorithm is analyzed, implemented & tested.

Keywords: Algorithm, Selection and Dual-Element Selection Sort, Comparison.

I. INTRODUCTION

There are many fundamental and advance sorting

algorithms. All sorting algorithm are problem specific

means they work well on some specific problem and do

not work well for all the problems. All sorting algorithm

apply to specific kind of problems. Some sorting

algorithm apply to small number of elements, some

sorting algorithm suitable for floating point numbers,

some are fit for specific range, some sorting algorithms

are used for large number of data, some are used if the list

has repeated values [6].

For instance, if the given input of numbers is (99, 61, 41,

51, 6, 78), then the output sequence returned by a sorting

algorithm will be (6, 41, 51, 61, 78, 99).

One of the fundamental problems of computer science is

ordering a list of items [9]. There is a plethora of solutions

to this problem, known as sorting algorithms. Some

sorting algorithms are simple and intuitive, such as the

bubble sort. Others, such as the quick sort are extremely

complicated, but produce lightning-fast results. The

common sorting algorithms can be divided into two

classes by the complexity of their algorithms. There is a

direct correlation between the complexity of an algorithm

and its relative efficiency.

Sorting is one of the most important and well-studied

problems in computer science. Many good algorithms are

known which offer various trade-offs in efficiency,

simplicity, memory use, and other factors. However, these

algorithms do not take into account features of modern

computer architectures that significantly influence

performance. A large number of sorting algorithms have

been proposed and their asymptotic complexity, in terms

of the number of comparisons or number of iterations, has

been carefully analysed [10]. In the recent past, there has

been a growing interest on improvements to sorting

algorithms that do not affect their asymptotic complexity

but never the less improve performance by enhancing data

locality.

Sorting is a fundamental task that is performed by most

computers. It is used frequently in a large variety of

important applications. Database applications used by

schools, banks, and other institutions all contain sorting

code. Because of the importance of sorting in these

applications, dozens of sorting algorithms have been

developed over the decades with varying complexity.

Slow sorting methods such as bubble sort, insertion sort,

and selection sort have a theoretical complexity of O (n
2
)

[11]. Even though these algorithms are very slow for

sorting large arrays, the algorithm is simple, so they are

not useless. If an application only needs to sort small

arrays, then it is satisfactory to use one of the simple slow

sorting algorithms as opposed to a faster, but more

complicated sorting algorithm [12]. For these applications,

the increase in coding time and probability of coding

mistake in using the faster sorting algorithm is not worth

the speedup in execution time. Of course, if an application

needs a faster sorting algorithm, there are certainly many

ones available, including quick sort, merge sort, and heap

sort. These algorithms have a theoretical complexity of O

(n log n). They are faster than the O (n
2
) algorithms and

can sort large arrays in a reasonable amount of time.

However, the cost of these fast sorting methods is that the

algorithm is much more complex and is harder to

correctly code. But the result of the more complex

algorithm is an efficient sorting method capable of being

used to sort very large arrays [13].

But sometimes question arises in front of us, whether

there any way through selection sorting can be more

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

512

IJSER © 2017
http://www.ijser.org

IJSER

effective and how to convert that algorithm into code [14].

Then demonstrate a modification of this algorithm, and

finally to assign the coding modification as a

programming. This paper suggests one simple

modification of sorting algorithm: Dual-Element Selection

Sort. One can argue as to whether the use of Dual-element

selection sort for these small array partitions will provide

improvement to this critical algorithm.

Therefore, to understand important concepts and

programming practice, a good programming exercise

plays a crucial role i.e. for using Dual-element selection

sort in place of normal selection sorting technique that

raises the sorting skills.

An effort is done in positive direction and realizes coding

technique for Dual sorting offer great improvements speed

up over the single selection sorting.

II. SELECTION SORT

The selection sort works by selecting the smallest

unsorted item remaining in the list, and then swapping it

with the item in the next position to be filled. The

selection sort has a complexity of O (n
2
) [14].

The worst case as well as average case complexity of

Selection sort is О(n
2
), where n represents the total

number of items in the given array to be sorted.

The selection sort is the unwanted step child of the n
2

sorts. It yields a 60% performance improvement over the

bubble sort, but the insertion sort is over twice as fast as

the bubble sort and is just as easy to implement as the

selection sort. In short, there is not really any reason to

use the selection sort-use the insertion sort instead [15].

The algorithm for selection sort having ARRAY as an array

with N elements is as follows:

SELECTION (ARRAY, N)

for (i=1 to N-1)

{

Min = ARRAY[i]

for (k = i+1 to N)

{

if (min > ARRAY [k])

{

 Min = A[k]

 Loc = k

}

}

Temp = ARRAY [Loc]

ARRAY [Loc] = ARRAY [i]

ARRAY [i] = Temp

}

III DUAL ELEMENT SELECTION SORT

A. Introduction

Various authors had made continuous attempts for

increasing the efficiency and performance of the sorting

process. The proposed algorithm is based on selection

sort.

The proposed algorithm as:

Starts from two elements and searches the entire list until

it finds the minimum value and second minimum value.

The sorting places the minimum value in the first place

and second minimum value in the second place, this

process continues until the complete list is sorted. In other

words, the proposed algorithm designed to minimize the

number of passes/comparisons that are performed. It

works by making N/2 passes over the shrinking unsorted

portion of the array, each time selecting the smallest and

second smallest value. Those values are then moved into

their final sorted position in one pass.

B. Algorithm

DESS (ARRAY, n)

for (i = 1; i <= n-1; i = i+2)

{

Min = ARRAY [i];

Smin = ARRAY [i+1];

Loc_Min = i;

Loc_Smin = i+1;

for (j = i+1; j <= n; j++)

 {

If (ARRAY [j] < Min)

{

Smin = Min;

Loc_Smin = Loc_Min;

Min = ARRAY [j];

Loc_Min = j;

 }

elseif (ARRAY [j] < Smin)

{

Smin = ARRAY [j];

Loc_Smin = j;

}

}

if (Loc_Min ~= i)

{

temp = ARRAY [i];

ARRAY [i] = ARRAY [Loc_Min];

ARRAY [Loc_Min] = temp;

}

if (Loc_Smin == i)

{

Loc_Smin = Loc_Min;

}

if (Loc_Smin ~= i+1)

{

temp1 = ARRAY [i+1];

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

513

IJSER © 2017
http://www.ijser.org

IJSER

ARRAY [i+1] = ARRAY [Loc_Smin];

ARRAY [Loc_Smin] = temp1;

}

}

C. Complexity Analysis

The general working of the proposed algorithm is already

discussed in detail. Now discuss its complexity analysis.

TABLE I

COMPLEXITY ANALYSIS

Line No. Iteration

1. for(i=1;i<=n-1;i=i+2)

2. Min = ARRAY[i]

3. Smin = ARRAY [i+1];

4. Loc_Min = i;

5. Loc_Smin = i+1;

6. for(j=i+1;j<=n;j++)

7. if(ARRAY [j] < Min)

8. Smin = Min;

9. Loc_Smin = Loc_Min;

10. Min = ARRAY [j];

11. Loc_Min = j;

12. elseif(ARRAY [j]<Smin)

13. Smin = ARRAY [j];

14. Loc_Smin = j;

15. if(Loc_Min ~= i)

16. temp = ARRAY [i];

17. ARRAY [i] = ARRAY [Loc_Min];

18. ARRAY [Loc_Min] = temp;

19. if(loc1 == i)

20. Loc_Smin = Loc_Min;

21. if(Loc_Smin ~= i+1)

22. temp1 = ARRAY [i+1];

23. ARRAY [i+1] = ARRAY [Loc_Smin];

24. ARRAY [Loc_Smin] = temp1;

Line 1 execute n/2 + 1 time in a single execution of the

algorithm.

Line 2-6 executes n/2 times in a single execution of the

algorithm.

Line 7-14 executes

n/2-1

∑ (2k+1).t if n is even

 K=0

n/2-1

∑ (2k+2).t if n is odd

 K=0

times in a single execution of the algorithm.

Line 15-24 executes n/2 times in a single execution of the

algorithm.

Note: t=1 when if statement is true, else t=0.

n/2-1

∑ (2k+1).t

K=0

Suppose for t=1 we have

n/2-1 n/2-1 n/2-1

∑ (2k+1) = 2∑ k + ∑ 1

K=0 K=0 K=0

= 2(((n/2-1)*((n/2-1)+1))/2) + (n/2-1)

[By Applying 1+2+3+…n = (n(n+1)/2)]

= ((n
2
-2n)/4) + (n/2-1)

Now calculating total time taking by proposed algorithm,

T(n) = n/2+1 + n/2 +(n
2
-2n)/4 +(n/2-1) + n/2

 = n
2
/4 + 3(n/2) + 1

Now taking only the dominant term, i.e. n
2
 the running

time of the algorithm is,

T(n) = O(n
2
)

III. WORKING

Let the given set of elements are 97, 43, 58, 84, 23, 76.

A. Selection Sort
TABLE II

WORKING OF SELECTION SORT

Passes Elements

Initial 3 5 6 8 2 9 4 1 7 0

1. 0 5 6 8 2 9 4 1 7 3

2. 0 1 6 8 2 9 4 5 7 3

3. 0 1 2 8 6 9 4 5 7 3

4. 0 1 2 3 6 9 4 5 7 8

5. 0 1 2 3 4 9 6 5 7 8

6. 0 1 2 3 4 5 6 9 7 8

7. 0 1 2 3 4 5 6 9 7 8

8. 0 1 2 3 4 5 6 7 9 8

9. 0 1 2 3 4 5 6 7 8 9

B. DESS Sort
TABLE III

WORKING of DESS SORT

Passes Elements

Initial 3 5 6 8 2 9 4 1 7 0

1. 0 1 6 8 2 9 4 5 7 3

2. 0 1 2 3 6 9 4 5 7 8

3. 0 1 2 3 4 5 6 9 7 8

4. 0 1 2 3 4 5 6 7 9 8

5. 0 1 2 3 4 5 6 7 8 9

IV. COMPARISION

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

514

IJSER © 2017
http://www.ijser.org

IJSER

A. Comparison of Proposed Algorithm with

Selection Sort
TABLE IV

WORST CASE ANALYSIS (ON THE BASIS OF NUMBER OF

COMPARISIONS)

Size of

input

Selection

Sort

DESSA % Improvement

N=50 1225 625 48%

N=99 4851 2450 49%

N=150 11175 5625 49%

N=499 124251 62250 49.9

N=1000 499500 250000 50%

N=4999 12492501 6247500 50.1%

N=10000 49995000 25000000 50.3%

Fig. 1 Analysis On the Basis of Number of Comparisons

Fig. 2 Analysis On the Basis of Execution Time

B. Comparison of Proposed Algorithm with

Fundamental Sorting Technique

TABLE VII

ON THE BASIS OF NUMBER OF PASSES

Size of

Input

Selection Bubble Insertion DESSA

N=50 49 49 49 2

N=99 98 98 98 49

N=150 149 149 149 75

N=499 498 498 498 249

Fig. 3 Analysis On the Basis of Number of Passes

VI. CONCLUSION & FUTURE

SCOPE

In this research paper we have studied about different

sorting algorithms along with their comparison. Every

sorting algorithm has advantage and disadvantage. The

fundamental sorting algorithms are basic sorting algorithm

and we have try to show this how disadvantage of

fundamental sorting algorithm have removed in advance

sorting algorithm. Various Sorting algorithms have been

compared on the basis of different factors like complexity,

number of passes, number of comparison etc. After the

study of all various sorting algorithms we observed that

there is no such algorithm, which works in this way that to

sort the two elements at a time. So we have proposed

sorting algorithm, which work on the basis of selecting

two elements simultaneously. For implementation to the

proposed algorithm we have to use MATLAB.

My first target is to remove the demerits of various sorting

algorithms. It is also seen that many algorithms are

problem oriented so we will try to make it global oriented.

Hence we can say that there are many future works which

are as follows.

� Remove disadvantage of various fundamental

sorting and advance sorting.

� Make problem oriented sorting to global

oriented.

In the end we would like to say that there is huge scope of

the sorting algorithm in the near future, and to find

optimum-sorting algorithm, the work on sorting algorithm

will go on forever.

REFERENCES

1225 4851
11175

124251

625 2450 5625

62250

0

20000

40000

60000

80000

100000

120000

140000

N=50 N=99 N=150 N=499

Selection

DESSA

0.0936 0.8112 3.2292

67.018

0.0624 0.6396 2.0282

31.278

0

10

20

30

40

50

60

70

80

N=150 N=499 N=1000 N=4999

Selection

DESSA

49

98
149

498

49
98

149

498

49
98

149

498

25
49

75

249

0

100

200

300

400

500

600

N=50 N=99 N=150 N=499

Selection

Bubble

Insertion

DESSA

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

515

IJSER © 2017
http://www.ijser.org

IJSER

[1] Y.Han “Deterministic sorting in O (nloglogn) time and

linear space”, Proceeding of the thirty-fourth annual ACM

symposium on theory of computing, Monteral Quebec,

Canada, (2002), p.602-608.

[2] Y.Han, M.Thorup, “Integer Sorting in O(nloglogn)

time and linear space” proceesings of the 43
rd

 symposium

on foundations of Computer Science, (2003), p.135-144.

[3] J.L. Bentley and R.Sedgewick. “Fast Algorithms for

Sorting and Searching Strings”, ACM-SIAM SODA

‟(2003), 360–369.

[4] G. Franceschini and V. Geffert, “An In-Place Sorting

with O(n log n) Comparisons and O(n) Moves”,

Proceedings of 44th Annual IEEE Symposium on

Foundations of Computer Science, (2003), pp. 242-250.

[5] M. A. Bender, M. Farach-Colton and M. A. Mosteiro,

“Insertion Sort is O(n log n)”, Proceedings of the Third

International Conference on Fun With Algorithms (FUN),

(2004), pp. 16-23.

[6] A. D. Mishra and D. Garg, “Selection of the best

sorting algorithm”, International Journal of Intelligent

Information Processing, vol. 2, no. 2, (2008) July-

December, pp. 363-368.

[7] O. O. Moses, “Improving the performance of bubble

sort using a modified diminishing increment sorting”,

Scientific Research and Essay, vol. 4, no. 8, (2009), pp.

740-744.

[8] J. Alnihoud and R. Mansi, “An Enhancement of Major

Sorting Algorithms”, International Arab Journal of

Information Technology, vol. 7, no. 1, (2010), pp. 55-62.

[9] Sultanullah Jadoon et al., “Design and Analysis of

Optimized Selection Sort Algorithm”, International

Journal of Electric & Computer Sciences IJECS-IJENS,

(2011)Vol: 11 No: 01.

[10] Savina & Surmeet Kaur, “Study of Sorting Algorithm

to Optimize Search Results”, International Journal of

Emerging Trends & Technology in Computer Science,

(2012) Volume 2, Issue 1.

[11] Md. Khairullah, “Enhancing Worst Sorting

Algorithms”, International Journal of Advanced Science

and Technology, (2013) Vol. 56.

[12] Ibrahim M. Al Turani, Khalid S. Al-Kharabsheh &

Abdallah M. AlTurani, “Grouping Comparison Sort”,

Australian Journal of Basic and Applied Sciences, (2013),

7(7): 470-475.

[13] Nitin Arora, Anil Kumar &Pramod Mehra, “Two

Way Counting Position Sort”, International Journal of

Computer Application (2013).

[14] Partha Sarathi Dutta , “ Design and Analysis of

Hybrid Selection Sort Algorithm”, International Journal of

Applied Research and Studies (2013).

[15] Surender Lakra & Divya, “Improving the

performance of selection sort using a modified Dual-

ended selection sorting”, International Journal of

Application or Innovation in Engineering & Management

(IJAIEM) (2013).

[16] Pankaj Sareen, “Comparison of Sorting Algorithms”,

International Journal of Advanced Research in Computer

Science and Software Engineering (2013).

[17] R.Srinivas & A.RagaDeepthi, “Novel Sorting

Algorithm”, International Journal on Computer Science

and Engineering (2013).

[18] Partha Sarathi Dutta, “An Approach to Improve the

Performance of Insertion Sort Algorithm”, International

Journal of Computer Science & Engineering Technology

(2013).

[19] Khalid Suleiman Al-Kharabsheh et al., “Review on

Sorting Algorithms A Comparative Study”, International

Journal of Computer Science and Security (IJCSS),

(2013), Volume (7) : Issue (3).

[20] Savina & Surmeet Kaur, “Study of Sorting

Algorithm to Optimize Search Results”, International

Journal of Emerging Trends & Technology in Computer

Science, (2013) Volume 2, Issue 1.

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

516

IJSER © 2017
http://www.ijser.org

IJSER

